IDENTIFICACIÓN DE LA UNIDAD DE APRENDIZAJE

Unidad académica: Instituto de Investigación en Ciencias Básicas y Aplicadas

Plan de estudios:

Licenciatura en Inteligencia Artificial

Unidad de aprendizaje:

Ciclo de formación: Profesional

Eje general de formación: Para la Generación y

PROGRAMACIÓN DE AMBIENTES Aplicación del Conocimiento

GRÁFICOS EN C# .NET. Semestre: 6°

Elaborada por: M.I.C.A. Yainier Labrada Fecha de elaboración: Abril, 2021

Nueva

Clave:	Horas teóricas:	Horas prácticas:	Horas totales:	Créditos:	Tipo de unidad de aprendizaje:	Carácter de la unidad de aprendizaje:	Modalidad:
	03	02	05	08	Optativa	Teórico - Práctica	Escolarizada

Plan (es) de estudio en los que se imparte:

A partir de todos los programas impartidos por el Instituto de Investigación en Ciencias Básicas y Aplicadas

ESTRUCTURA DE LA UNIDAD DE APRENDIZAJE

Presentación:

Durante la unidad de aprendizaje se estudian principios y fundamentos en el lenguaje de programación C# para interfaces visuales, mediante diversas técnicas basadas en la programación Orientada a Objetos y la Programación Orientada a Eventos.

Propósito:

Conozca, identifique y aplique los conocimientos sobre los principios fundamentales del lenguaje de programación C# y sus características, al término de la unidad de aprendizaje, a través de múltiples aplicaciones a la programación visual escritorio y web, parala resolución de problemas de la vida real, con responsabilidad social y ética profesional.

Competencias que contribuyen al perfil de egreso

Competencias genéricas:

CG1. Capacidad para el aprendizaje de forma autónoma.

- CG5. Capacidad de aprender y actualizarse permanentemente.
- CG6. Capacidad para la investigación.

Competencias específicas:

- CE11. Desarrolla sistemas computacionales inteligentes utilizando una computadora con la arquitectura y lenguaje de programación adecuados para la resolución de problemas con una actitud investigativa y socialmente responsable.
- CE12. Implementa, prueba y mantiene proyectos de sistemas inteligentes empleando criterios de cumplimiento según estándares de calidad establecidos y aprovechando al máximo sus recursos, para resolver problemas científicos y tecnológicos y tomar decisiones que generen bienestar para la sociedad en su conjunto.
- CE13. Analiza impactos locales y globales de la Inteligencia Artificial mediante el uso de criterios objetivos utilizando lenguaje técnico apropiado, comunicando efectivamente conceptos, métodos y resultados en forma oral y escrita, para presentar propuestas y proyectos de una manera ética y responsable.

CONTENIDOS

Bloques	Temas
1. Introducción.	1.1. La historia de C#
	1.2. El marco de trabajo .NET de Microsoft
	1.3. ¿Qué es un programa?
	1.4. Fundamentos de programación
	1.5. Errores comunes de programación
	1.6. Ejercicios
2. Entorno de	2.1. Introducción
desarrollo de C#.	2.2. Instalación y configuración
	2.3. Cree su primer programa
	2.4. Los controles en tiempo de diseño
	2.5. Los eventos y el control Button
	2.6. Apertura de un proyecto existente
	2.7. Documentación de los valores de las propiedades
	2.8. Errores en los programas
	2.9. Funciones del editor

- 2.10. El cuadro de mensajes
- 2.11. Ayuda
- 2.12. Fundamentos de programación
- 2.13. Errores comunes de programación
- 2.14. Secretos de codificación
- 2.15. Nuevos elementos del lenguaje
- 2.16. Nuevas características del IDE
- 2.17. Ejercicios

3. Introducción a los gráficos

- 3.1. Introducción
- 3.2. Objetos, métodos, propiedades, clases: una analogía
- 3.3. Herencia
 - 3.3.1. Uso de la herencia
 - 3.3.2. Palabrada reservada protected
 - 3.3.3. Redefinición
 - 3.3.4. Diagramas de clases
 - 3.3.5. La herencia base. Constructores. Clases Abstractas.
 - 3.3.6. Nuevos elementos del lenguaje C#
- 3.4. Polimorfismo
 - 3.4.1. El polimorfismo en acción
 - 3.4.2. Conceptos asociados al polimorfismo
- 3.5. Nuestro primer dibujo
- 3.6. Creación del programa
- 3.7. El sistema de coordenadas de gráficos
- 3.8. Explicación del programa
- 3.9. Métodos para dibujar
- 3.10. Colores
- 3.11. El concepto de secuencia y las instrucciones
- 3.12. Adición de significado mediante el uso de comentarios
- 3.13. Fundamentos de programación
- 3.14. Errores comunes de programación
- 3.15. Secretos de codificación

	3.16. Nuevos elementos del lenguaje		
	3.17. Nuevas características del IDE		
	3.18. Ejercicios		
4. Manejo de	4.1. ¿Qué es una Excepción?		
Excepciones	4.2. Manejando Excepciones utilizando el bloque Try/Catch		
	4.3. Utilizando un bloque Finally		
	4.4. Lanzamiento de Excepciones		

ESTRATEGIAS DE ENSEÑANZA - APRENDIZAJE

Estrategias de ap	rendiza	je sugeridas (Marque X)	
Aprendizaje basado en problemas	(X)	Nemotecnia	()
Estudios de caso	()	Análisis de textos	()
Trabajo colaborativo	(X)	Seminarios	()
Plenaria	()	Debate	(X)
Ensayo	()	Taller	()
Mapas conceptuales	()	Ponencia científica	()
Diseño de proyectos	(X)	Elaboración de síntesis	()
Mapa mental	()	Monografía	()
Práctica reflexiva	()	Reporte de lectura	()
Trípticos	()	Exposición oral	(X)
Otros			
Estrategias de er	nseñanz	a sugeridas (Marque X)	
Presentación oral (conferencia o	(X)	Experimentación (prácticas)	(X)
exposición) por parte del docente			
Debate o Panel	()	Trabajos de investigación	()
		documental	
Lectura comentada	(X)	Anteproyectos de investigación	()

Seminario de investigación	()	Discusión guiada	(X)
Estudio de Casos	()	Organizadores gráficos	()
		(Diagramas, etc.)	
Foro	()	Actividad focal	()
Demostraciones	()	Analogías	()
Ejercicios prácticos (series de	(X)	Método de proyectos	()
problemas)			
Interacción la realidad (a través de	()	Actividades generadoras de	()
videos, fotografías, dibujos y software		información previa	
especialmente diseñado).			
Organizadores previos	()	Exploración de la web	()
Archivo	()	Portafolio de evidencias	()
Ambiente virtual (foros, chat, correos,	()	Enunciado de objetivo o intenciones	(X)
ligas a otros sitios web, otros)			
	1	1	

CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje	
Exámenes parciales	30%	
Realización de práctica	30%	
Búsqueda de información	20%	
Participación en clase	10%	
Reportes	10%	
Total	100 %	

PERFIL DEL PROFESORADO

Licenciatura, Maestría o Doctorado en el área afín a la disciplina de la unidad de aprendizaje (Ciencias Computacionales)

REFERENCIAS

Básicas:

- J. Pitt-Francis and J. Whiteley. (2017). Guide to Scientific Computing in C++.
- M. Muñóz-Serafín. (2017). Introducción al C# Manual del Estudiante.
- J. ferguson, B. Patterson, J. Beres, P. Boutquin and M. Gupta. (2003). La Biblia de C#.
- D. Bell and M. Parr. (2010). C# Para Estudiantes.
- N.A. Landa-Cosio. (2010). C# La Guía Total del Programador.

Complementarias:

- Downey, A. B., & Mayfield, C. (2019). *Think Java: How to Think Like a Computer Scientist*. O'Reilly Media.
- Hunt, J. (2018). A Beginner's Guide to Scala, Object Orientation and Functional Programming. Springer.

